Remove custom pitch-map, add order-sorting

This commit is contained in:
Geraint 2022-11-27 11:25:35 +00:00
parent c6db62ca6e
commit 598d037212
2 changed files with 199 additions and 123 deletions

View File

@ -1,9 +1,10 @@
# Signalsmith Stretch: pitch/time library
# Signalsmith Stretch: C++ pitch/time library
This is a C++11 library for pitch and time stretching, using the final approach from the ADC22 presentation _Four Ways To Write A Pitch-Shifter_.
## How to use it
It's still a work-in-progress: the pitch-shifting is fine, but the time-stretching isn't finished.
## How to use it
```cpp
#include "signalsmith-stretch.h"
@ -53,22 +54,6 @@ You can set a "tonality limit", which uses a non-linear frequency map to preserv
stretch.setTransposeSemitones(4, 8000/sampleRate);
```
### Custom pitch map
This stretcher does (fairly rough) peak-detection, and creates a non-linear frequency map based on that.
You can hook into this to define your own pitch-map, by providing a callback which is called once per channel, for every FFT block:
```cpp
stretch.setMap([&](int channel) {
for (auto &peak : stretch.peaks) {
peak.output = peak.input*2; // up one octave
}
});
```
The input/output frequencies are relative to Nyquist. It's not currently-tested what happens if your map is non-monotonic.
## Compiling
Just include `signalsmith-stretch.h` in your build.

View File

@ -5,7 +5,6 @@
#include "dsp/delay.h"
#include "dsp/curves.h"
#include <vector>
#include <functional>
#include <algorithm>
namespace signalsmith { namespace stretch {
@ -23,7 +22,7 @@ struct SignalsmithStretch {
return stft.windowSize()/2;
}
int outputLatency() const {
return stft.windowSize() - inputLatencySamples();
return stft.windowSize() - inputLatency();
}
void reset() {
@ -41,8 +40,12 @@ struct SignalsmithStretch {
channelWeight = 0.5;
}
/// Manual setup
// manual parameters
Sample freqWeight = 1, timeWeight = 2, channelWeight = 0.5;
bool sortOrder = true; // Assemble output spectrum highest-magnitude first
Sample maxProportion = 0.75; // How much the strongest prediction overrides everything else
/// Manual setup
void configure(int nChannels, int blockSamples, int intervalSamples) {
channels = nChannels;
stft.resize(channels, blockSamples, intervalSamples);
@ -57,9 +60,11 @@ struct SignalsmithStretch {
timeShiftPhases(blockSamples*Sample(-0.5), rotCentreSpectrum);
timeShiftPhases(-intervalSamples, rotPrevOutput);
peaks.reserve(stft.bands());
energy.resize(stft.bands());
smoothedEnergy.resize(stft.bands());
inputBinMap.resize(stft.bands());
outputGainMap.resize(stft.bands());
outputMap.resize(stft.bands());
observationOrder.resize(channels*stft.bands());
maxEnergyChannel.resize(stft.bands());
}
template<class Inputs, class Outputs>
@ -143,24 +148,10 @@ struct SignalsmithStretch {
void setTransposeSemitones(Sample semitones, Sample tonalityLimit=0) {
setTransposeFactor(std::pow(2, semitones/12), tonalityLimit);
}
struct Peak {
Sample input, output, energy;
bool operator< (const Peak &other) const {
return output < other.output;
}
};
std::vector<Peak> peaks;
/// This function is called once per channel, from inside `.process()`, so that you can alter the mapping in `.peaks`
void setMap(std::function<void(int)> freqMap) {
frequencyMapFn = freqMap;
}
private:
using Complex = std::complex<Sample>;
Sample freqMultiplier = 1, freqTonalityLimit = 0.5;
std::function<void(int)> frequencyMapFn;
signalsmith::spectral::STFT<Sample> stft{0, 1, 1};
signalsmith::delay::MultiBuffer<Sample> inputBuffer;
@ -184,6 +175,7 @@ private:
Complex output, prevOutput{0};
Complex timeChange{0};
Sample energy, prevEnergy;
bool ready = false;
};
std::vector<Band> channelBands;
Band * bandsForChannel(int channel) {
@ -203,6 +195,12 @@ private:
Complex high = getBand<member>(channel, lowIndex + 1);
return low + (high - low)*fractional;
}
template<Complex Band::*member>
Complex getFractional(int channel, Sample inputIndex) {
int lowIndex = std::floor(inputIndex);
Sample fracIndex = inputIndex - std::floor(inputIndex);
return getFractional<member>(channel, lowIndex, fracIndex);
}
template<Sample Band::*member>
Sample getBand(int channel, int index) {
if (index < 0) index = -1 - index;
@ -215,9 +213,40 @@ private:
Sample high = getBand<member>(channel, lowIndex + 1);
return low + (high - low)*fractional;
}
template<Sample Band::*member>
Sample getFractional(int channel, Sample inputIndex) {
int lowIndex = std::floor(inputIndex);
Sample fracIndex = inputIndex - std::floor(inputIndex);
return getFractional<member>(channel, lowIndex, fracIndex);
}
Sample peakThreshold = 1;
std::vector<Sample> smoothedEnergy, inputBinMap, outputGainMap;
struct Peak {
Sample input, output, energy;
bool operator< (const Peak &other) const {
return output < other.output;
}
};
std::vector<Peak> peaks;
std::vector<Sample> energy, smoothedEnergy;
struct PitchMapPoint {
Sample inputBin, freqGrad;
};
std::vector<PitchMapPoint> outputMap;
struct OrderPoint {
int channel, outputBand;
Sample inputIndex;
Sample energy;
Complex input;
// For sorting in descending order
bool operator<(const OrderPoint &other) const {
return other.energy < energy;
}
};
std::vector<OrderPoint> observationOrder;
std::vector<int> maxEnergyChannel;
void processSpectrum(int inputInterval) {
int outputInterval = stft.interval();
@ -237,70 +266,131 @@ private:
}
Sample smoothingBins = Sample(stft.fftSize())/stft.interval();
Band *bins0 = bandsForChannel(0);
findPeaks(smoothingBins);
updateOutputMap(smoothingBins);
for (int c = 0; c < channels; ++c) {
Band *bins = bandsForChannel(c);
findPeaks(bins, smoothingBins);
if (frequencyMapFn) frequencyMapFn(c);
// Scale so they map bins, not frequency
for (auto &p : peaks) {
p.input *= stft.fftSize();
p.output *= stft.fftSize();
}
// Create the input/output bin map
updateBinMap(smoothingBins);
auto *order = observationOrder.data() + c*stft.bands();
for (int b = 0; b < stft.bands(); ++b) {
Sample inputIndex = inputBinMap[b];
int lowIndex = std::floor(inputIndex);
Sample fracIndex = inputIndex - std::floor(inputIndex);
auto mapPoint = outputMap[b];
int lowIndex = std::floor(mapPoint.inputBin);
Sample fracIndex = mapPoint.inputBin - std::floor(mapPoint.inputBin);
Sample outputEnergy = getFractional<&Band::energy>(c, lowIndex, fracIndex);
Band &outputBin = bins[b];
Complex input = getFractional<&Band::input>(c, lowIndex, fracIndex);
Complex prevInput = getFractional<&Band::prevInput>(c, lowIndex, fracIndex);
Complex timeChange = input*std::conj(prevInput);
Complex prediction = outputBin.prevOutput*timeChange*freqWeight;
if (b > 0) {
Sample downIndex = inputIndex - rate;
int downLowIndex = std::floor(downIndex);
Sample fracDownIndex = downIndex - std::floor(downIndex);
Complex downInput = getFractional<&Band::input>(c, downLowIndex, fracDownIndex);
Complex freqChange = input*std::conj(downInput);
Complex outputDown = bins[b - 1].output;
prediction += outputDown*freqChange*timeWeight;
}
int longStep = std::round(smoothingBins);
if (b > longStep) {
Sample downIndex = inputIndex - longStep*rate;
int downLowIndex = std::floor(downIndex);
Sample fracDownIndex = downIndex - std::floor(downIndex);
Complex downInput = getFractional<&Band::input>(c, downLowIndex, fracDownIndex);
Complex freqChange = input*std::conj(downInput);
Complex outputDown = bins[b - longStep].output;
prediction += outputDown*freqChange*timeWeight;
}
outputEnergy *= std::max<Sample>(0, mapPoint.freqGrad); // scale the energy according to local stretch factor
order[b] = {c, b, mapPoint.inputBin, outputEnergy, input};
if (c > 0) {
Complex ch0Input = getFractional<&Band::input>(0, lowIndex, fracIndex);
Complex ch0Output = bins0[b].output;
Complex channelRot = input*std::conj(ch0Input);
prediction += ch0Output*channelRot*channelWeight;
}
Sample predictionNorm = std::norm(prediction);
if (predictionNorm > 1e-15) {
outputBin.output = prediction*std::sqrt(outputEnergy/predictionNorm);
} else {
outputBin.output = input;
}
outputBin.output *= outputGainMap[b];
bins[b].ready = false;
}
}
if (sortOrder) std::sort(observationOrder.begin(), observationOrder.end());
for (auto &c : maxEnergyChannel) c = -1;
for (auto &ordered : observationOrder) {
auto *bins = bandsForChannel(ordered.channel);
auto &outputBin = bins[ordered.outputBand];
int lowIndex = std::floor(ordered.inputIndex);
Sample fracIndex = ordered.inputIndex - std::floor(ordered.inputIndex);
// We always have the phase-vocoder prediction
Complex prevInput = getFractional<&Band::prevInput>(ordered.channel, lowIndex, fracIndex);
Complex timeChange = ordered.input*std::conj(prevInput);
Complex prediction = outputBin.prevOutput*timeChange*freqWeight;
// Track the strongest prediction
Complex maxPrediction = prediction;
Sample maxPredictionNorm = std::norm(maxPrediction);
// vertical upwards, if it exists
if (ordered.outputBand > 0) {
auto &outputDownBin = bins[ordered.outputBand - 1];
if (outputDownBin.ready) {
Complex downInput = getFractional<&Band::input>(ordered.channel, ordered.inputIndex - rate);
Complex freqChange = ordered.input*std::conj(downInput);
Complex newPrediction = outputDownBin.output*freqChange*timeWeight;
prediction += newPrediction;
if (std::norm(newPrediction) > maxPredictionNorm) {
maxPredictionNorm = std::norm(newPrediction);
maxPrediction = newPrediction;
}
}
}
// vertical downwards, if it exists
if (ordered.outputBand < stft.bands() - 1) {
auto &outputDownBin = bins[ordered.outputBand + 1];
if (outputDownBin.ready) {
Complex downInput = getFractional<&Band::input>(ordered.channel, ordered.inputIndex + rate);
Complex freqChange = ordered.input*std::conj(downInput);
Complex newPrediction = outputDownBin.output*freqChange*timeWeight;
prediction += newPrediction;
if (std::norm(newPrediction) > maxPredictionNorm) {
maxPredictionNorm = std::norm(newPrediction);
maxPrediction = newPrediction;
}
}
}
// longer verticals
int longStep = std::round(smoothingBins);
if (ordered.outputBand > longStep) {
auto &outputDownBin = bins[ordered.outputBand - longStep];
if (outputDownBin.ready) {
Complex downInput = getFractional<&Band::input>(ordered.channel, ordered.inputIndex - longStep*rate);
Complex freqChange = ordered.input*std::conj(downInput);
Complex newPrediction = outputDownBin.output*freqChange*timeWeight;
prediction += newPrediction;
if (std::norm(newPrediction) > maxPredictionNorm) {
maxPredictionNorm = std::norm(newPrediction);
maxPrediction = newPrediction;
}
}
}
if (ordered.outputBand < stft.bands() - longStep) {
auto &outputDownBin = bins[ordered.outputBand + longStep];
if (outputDownBin.ready) {
Complex downInput = getFractional<&Band::input>(ordered.channel, ordered.inputIndex + longStep*rate);
Complex freqChange = ordered.input*std::conj(downInput);
Complex newPrediction = outputDownBin.output*freqChange*timeWeight;
prediction += newPrediction;
if (std::norm(newPrediction) > maxPredictionNorm) {
maxPredictionNorm = std::norm(newPrediction);
maxPrediction = newPrediction;
}
}
}
// Inter-channel prediction, if it exists
int &maxChannel = maxEnergyChannel[ordered.outputBand];
if (maxChannel >= 0) {
Complex otherInput = getFractional<&Band::input>(maxChannel, lowIndex, fracIndex);
Complex channelRot = ordered.input*std::conj(otherInput);
auto *otherBins = bandsForChannel(maxChannel);
Complex otherOutputOutput = otherBins[ordered.outputBand].output;
Complex newPrediction = otherOutputOutput*channelRot*channelWeight;
prediction += newPrediction;
if (std::norm(newPrediction) > maxPredictionNorm) {
maxPredictionNorm = std::norm(newPrediction);
maxPrediction = newPrediction;
}
} else {
maxChannel = ordered.channel;
}
prediction += (maxPrediction - prediction)*maxProportion;
Sample predictionNorm = std::norm(prediction);
if (predictionNorm > 1e-15) {
outputBin.output = prediction*std::sqrt(ordered.energy/predictionNorm);
} else {
outputBin.output = ordered.input;
}
outputBin.ready = true;
}
for (auto &bin : channelBands) {
bin.prevOutput = bin.output;
@ -309,23 +399,28 @@ private:
}
}
void smoothEnergy(Band *bins, Sample smoothingBins) {
// Produces smoothed energy across all channels
void smoothEnergy(Sample smoothingBins) {
Sample smoothingSlew = 1/(1 + smoothingBins*Sample(0.5));
for (auto &e : energy) e = 0;
for (int c = 0; c < channels; ++c) {
Band *bins = bandsForChannel(c);
for (int b = 0; b < stft.bands(); ++b) {
Sample e = std::norm(bins[b].input);
bins[b].energy = e;
energy[b] += e;
}
}
for (int b = 0; b < stft.bands(); ++b) {
auto &bin = bins[b];
Sample e = std::norm(bin.input);
bin.energy = e;
smoothedEnergy[b] = e*peakThreshold;
smoothedEnergy[b] = energy[b];
}
Sample e = 0;
for (int repeat = 0; repeat < 2; ++repeat) {
for (int b = stft.bands() - 1; b >= 0; --b) {
auto &bin = bins[b];
e += (smoothedEnergy[b] - e)*smoothingSlew;
smoothedEnergy[b] = e;
}
for (int b = 0; b < stft.bands(); ++b) {
auto &bin = bins[b];
e += (smoothedEnergy[b] - e)*smoothingSlew;
smoothedEnergy[b] = e;
}
@ -340,70 +435,66 @@ private:
return freq*freqMultiplier;
}
void findPeaks(Band *bins, Sample smoothingBins) {
smoothEnergy(bins, smoothingBins);
// Identifies spectral peaks using energy across all channels
void findPeaks(Sample smoothingBins) {
smoothEnergy(smoothingBins);
peaks.resize(0);
// Artificial peak at 0
peaks.emplace_back(Peak{0, 0, 0});
int start = 0;
while (start < stft.bands()) {
if (bins[start].energy > smoothedEnergy[start]) {
if (energy[start] > smoothedEnergy[start]) {
int end = start + 1;
while (end < stft.bands() && bins[end].energy > smoothedEnergy[end]) {
while (end < stft.bands() && energy[end] > smoothedEnergy[end]) {
++end;
}
// Take the average frequency and energy across the peak range
Sample freqSum = 0, energySum = 0;
for (int b = start; b < end; ++b) {
Sample e = bins[b].energy;
Sample e = energy[b];
freqSum += (b + 0.5)*e;
energySum += e;
}
Sample avgFreq = freqSum/(stft.fftSize()*energySum);
Sample avgEnergy = energySum/(end - start);
peaks.emplace_back(Peak{avgFreq, defaultFreqMap(avgFreq), avgEnergy});
peaks.emplace_back(Peak{avgFreq*stft.fftSize(), defaultFreqMap(avgFreq)*stft.fftSize(), avgEnergy});
start = end;
}
++start;
}
// Artificial peak at Nyquist
peaks.emplace_back(Peak{0.5, defaultFreqMap(freqMultiplier), 0});
}
void updateBinMap(Sample peakWidthBins) {
std::stable_sort(peaks.begin(), peaks.end());
void updateOutputMap(Sample peakWidthBins) {
Sample linearZoneBins = peakWidthBins*Sample(0.5);
for (auto &g : outputGainMap) g = 1; // reset gains
Sample bottomOffset = peaks[0].input - peaks[0].output;
for (int b = 0; b < std::min<int>(stft.bands(), peaks[0].output); ++b) {
inputBinMap[b] = peaks[0].input;
outputGainMap[b] = 0;
outputMap[b] = {b + bottomOffset, 1};
}
for (size_t p = 1; p < peaks.size(); ++p) {
const Peak &prev = peaks[p - 1], &next = peaks[p];
Sample prevEnd = prev.output + linearZoneBins;
Sample nextStart = next.output - linearZoneBins;
signalsmith::curves::Linear<Sample> segment(prevEnd, nextStart, prev.input + linearZoneBins, next.input - linearZoneBins);
if (nextStart < prevEnd) nextStart = prevEnd = (nextStart + prevEnd)*Sample(0.5);
signalsmith::curves::Linear<Sample> segment(prevEnd, nextStart, prev.input + linearZoneBins, next.input - linearZoneBins);
Sample segmentGrad = ((prev.input + linearZoneBins) - (next.input - linearZoneBins))/(prevEnd - nextStart + Sample(1e-10));
prevEnd = std::max<Sample>(0, std::min<Sample>(stft.bands(), prevEnd));
nextStart = std::max<Sample>(0, std::min<Sample>(stft.bands(), nextStart));
for (int b = std::max<int>(0, std::ceil(prev.output)); b < prevEnd; ++b) {
inputBinMap[b] = b + prev.input - prev.output;
outputMap[b] = {b + prev.input - prev.output, 1};
}
for (int b = std::ceil(prevEnd); b < nextStart; ++b) {
inputBinMap[b] = segment(b);
outputMap[b] = {segment(b), segmentGrad};
}
for (int b = std::ceil(nextStart); b < std::min<int>(stft.bands(), std::ceil(next.output)); ++b) {
inputBinMap[b] = b + next.input - next.output;
outputMap[b] = {b + next.input - next.output, 1};
}
}
Sample topOffset = peaks.back().input - peaks.back().output;
for (int b = std::max<int>(0, peaks.back().output); b < stft.bands(); ++b) {
inputBinMap[b] = peaks.back().input;
outputGainMap[b] = 0;
outputMap[b] = {b + topOffset, 1};
}
}
};