Refactor, split formants into 3 computation steps

This commit is contained in:
Geraint 2025-04-18 21:03:15 +01:00
parent 004a52b30d
commit b84e9cf5e9
3 changed files with 99 additions and 91 deletions

View File

@ -32,6 +32,7 @@ dev: out/stretch
out/stretch --time=0.8 --semitones=10 --formant-comp $(TEST_WAV) out/shift-fc.wav
out/stretch --time=0.8 --semitones=10 --formant-comp --formant=3 $(TEST_WAV) out/shift-fc-f3.wav
out/stretch --time=0.8 --semitones=10 --formant-comp --formant=3 --formant-base=500 $(TEST_WAV) out/shift-fc-f3-fb500.wav
out/stretch --time=0.8 --semitones=10 --formant-comp --formant=2 --formant-base=100 $(TEST_WAV) out/shift-fc-f2-fb100.wav
clean:
rm -rf out

View File

@ -2,6 +2,7 @@
#include <iostream>
#define LOG_EXPR(expr) std::cout << #expr << " = " << (expr) << "\n";
#define PROFILE_PLOT_CHUNKS
#ifdef PROFILE_PLOT_CHUNKS
size_t activeStepIndex = 0;
void profileProcessStart(int, int);

View File

@ -257,7 +257,6 @@ struct SignalsmithStretch {
}
blockProcess.processFormants = formantMultiplier != 1 || (formantCompensation && blockProcess.mappedFrequencies);
if (blockProcess.processFormants) ++blockProcess.steps;
blockProcess.timeFactor = didSeek ? seekTimeFactor : stft.defaultInterval()/std::max<Sample>(1, inputInterval);
didSeek = false;
@ -540,6 +539,7 @@ private:
processSpectrumSteps += channels; // preliminary phase-vocoder prediction
processSpectrumSteps += splitMainPrediction;
if (blockProcess.newSpectrum) processSpectrumSteps += 1; // .input -> .prevInput
if (blockProcess.processFormants) processSpectrumSteps += 3;
}
void processSpectrum(size_t step) {
Sample timeFactor = blockProcess.timeFactor;
@ -598,10 +598,11 @@ private:
return;
}
if (blockProcess.processFormants) {
if (step-- == 0) {
updateFormants(0);
if (step < 3) {
updateFormants(step);
return;
}
step -= 3;
}
// Preliminary output prediction from phase-vocoder
if (step < size_t(channels)) {
@ -836,99 +837,104 @@ private:
Sample freqEstimateWeighted = 0;
Sample freqEstimateWeight = 0;
Sample estimateFrequency() {
// 3 highest peaks in the input
std::array<int, 3> peakIndices{0, 0, 0};
for (int b = 1; b < bands - 1; ++b) {
Sample e = formantMetric[b];
// local maxima only
if (e < formantMetric[b - 1] || e <= formantMetric[b + 1]) continue;
if (e > formantMetric[peakIndices[0]]) {
if (e > formantMetric[peakIndices[1]]) {
if (e > formantMetric[peakIndices[2]]) {
peakIndices = {peakIndices[1], peakIndices[2], b};
} else {
peakIndices = {peakIndices[1], b, peakIndices[2]};
}
} else {
peakIndices[0] = b;
}
}
}
// VERY rough pitch estimation
int peakEstimate = peakIndices[2];
if (formantMetric[peakIndices[1]] > formantMetric[peakIndices[2]]*0.1) {
int diff = std::abs(peakEstimate - peakIndices[1]);
if (diff > peakEstimate/8 && diff < peakEstimate*7/8) peakEstimate = peakEstimate%diff;
if (formantMetric[peakIndices[0]] > formantMetric[peakIndices[2]]*0.01) {
int diff = std::abs(peakEstimate - peakIndices[0]);
if (diff > peakEstimate/8 && diff < peakEstimate*7/8) peakEstimate = peakEstimate%diff;
}
}
Sample weight = formantMetric[peakIndices[2]];
// Smooth it out a bit
freqEstimateWeighted += (peakEstimate*weight - freqEstimateWeighted)*0.25;
freqEstimateWeight += (weight - freqEstimateWeight)*0.25;
return freqEstimateWeighted/(freqEstimateWeight + Sample(1e-30));
}
Sample freqEstimate;
std::vector<Sample> formantMetric;
Sample formantBaseFreq = 0;
void updateFormants(size_t) {
return;
for (auto &e : formantMetric) e = 0;
for (int c = 0; c < channels; ++c) {
Band *bins = bandsForChannel(c);
for (int b = 0; b < bands; ++b) {
formantMetric[b] += bins[b].inputEnergy;
}
}
Sample freqEstimate = freqToBand(formantBaseFreq);
if (formantBaseFreq <= 0) {
// 3 highest peaks in the input
std::array<int, 3> peakIndices{0, 0, 0};
for (int b = 1; b < bands - 1; ++b) {
Sample e = formantMetric[b];
// local maxima only
if (e < formantMetric[b - 1] || e <= formantMetric[b + 1]) continue;
if (e > formantMetric[peakIndices[0]]) {
if (e > formantMetric[peakIndices[1]]) {
if (e > formantMetric[peakIndices[2]]) {
peakIndices = {peakIndices[1], peakIndices[2], b};
} else {
peakIndices = {peakIndices[1], b, peakIndices[2]};
}
} else {
peakIndices[0] = b;
}
}
}
// VERY rough pitch estimation
int peakEstimate = peakIndices[2];
if (formantMetric[peakIndices[1]] > formantMetric[peakIndices[2]]*0.1) {
int diff = std::abs(peakEstimate - peakIndices[1]);
if (diff > peakEstimate/8 && diff < peakEstimate*7/8) peakEstimate = peakEstimate%diff;
if (formantMetric[peakIndices[0]] > formantMetric[peakIndices[2]]*0.01) {
int diff = std::abs(peakEstimate - peakIndices[0]);
if (diff > peakEstimate/8 && diff < peakEstimate*7/8) peakEstimate = peakEstimate%diff;
}
}
Sample weight = formantMetric[peakIndices[2]];
// Smooth it out a bit
freqEstimateWeighted += (peakEstimate*weight - freqEstimateWeighted)*0.25;
freqEstimateWeight += (weight - freqEstimateWeight)*0.25;
freqEstimate = freqEstimateWeighted/(freqEstimateWeight + Sample(1e-30));
}
for (int b = 0; b < bands; ++b) {
formantMetric[b] = std::sqrt(std::sqrt(formantMetric[b]));
}
Sample slew = 1/(freqEstimate*0.71 + 1);
Sample e = 0;
for (int repeat = 0; repeat < 1; ++repeat) {
for (int b = bands - 1; b >= 0; --b) {
e += (formantMetric[b] - e)*slew;
formantMetric[b] = e;
}
for (int b = 0; b < bands; ++b) {
e += (formantMetric[b] - e)*slew;
formantMetric[b] = e;
}
}
auto getFormant = [&](Sample band) -> Sample {
if (band < 0) return 0;
band = std::min<Sample>(band, bands);
int floorBand = std::floor(band);
Sample fracBand = band - floorBand;
Sample low = formantMetric[floorBand], high = formantMetric[floorBand + 1];
return low + (high - low)*fracBand;
};
for (int b = 0; b < bands; ++b) {
Sample inputF = bandToFreq(b);
Sample outputF = formantCompensation ? mapFreq(inputF) : inputF;
outputF = invMapFormant(outputF);
Sample inputE = formantMetric[b];
Sample targetE = getFormant(freqToBand(outputF));
Sample formantRatio = targetE/(inputE + Sample(1e-30));
Sample energyRatio = (formantRatio*formantRatio)*(formantRatio*formantRatio);
void updateFormants(size_t step) {
if (step-- == 0) {
for (auto &e : formantMetric) e = 0;
for (int c = 0; c < channels; ++c) {
Band *bins = bandsForChannel(c);
// This is what's used to decide the output energy, so this affects the output
bins[b].inputEnergy *= energyRatio;
for (int b = 0; b < bands; ++b) {
formantMetric[b] += bins[b].inputEnergy;
}
}
freqEstimate = freqToBand(formantBaseFreq);
if (formantBaseFreq <= 0) freqEstimate = estimateFrequency();
for (int b = 0; b < bands; ++b) {
formantMetric[b] = std::sqrt(formantMetric[b]);
}
} else if (step-- == 0) {
Sample slew = 1/(freqEstimate*0.5 + 1);
Sample e = 0;
for (size_t repeat = 0; repeat < 2; ++repeat) {
for (int b = bands - 1; b >= 0; --b) {
e += (formantMetric[b] - e)*slew;
formantMetric[b] = e;
}
for (int b = 0; b < bands; ++b) {
e += (formantMetric[b] - e)*slew;
formantMetric[b] = e;
}
}
} else {
auto getFormant = [&](Sample band) -> Sample {
if (band < 0) return 0;
band = std::min<Sample>(band, bands);
int floorBand = std::floor(band);
Sample fracBand = band - floorBand;
Sample low = formantMetric[floorBand], high = formantMetric[floorBand + 1];
return low + (high - low)*fracBand;
};
for (int b = 0; b < bands; ++b) {
Sample inputF = bandToFreq(b);
Sample outputF = formantCompensation ? mapFreq(inputF) : inputF;
outputF = invMapFormant(outputF);
Sample inputE = formantMetric[b];
Sample targetE = getFormant(freqToBand(outputF));
Sample formantRatio = targetE/(inputE + Sample(1e-30));
Sample energyRatio = formantRatio*formantRatio;
for (int c = 0; c < channels; ++c) {
Band *bins = bandsForChannel(c);
// This is what's used to decide the output energy, so this affects the output
bins[b].inputEnergy *= energyRatio;
}
}
}
}