#ifndef SIGNALSMITH_DSP_CURVES_H #define SIGNALSMITH_DSP_CURVES_H #include "./common.h" #include #include // std::stable_sort namespace signalsmith { namespace curves { /** @defgroup Curves Curves @brief User-defined mapping functions @{ @file */ /// Linear map for real values. template class Linear { Sample a1, a0; public: Linear() : Linear(0, 1) {} Linear(Sample a0, Sample a1) : a1(a1), a0(a0) {} /// Construct by from/to value pairs Linear(Sample x0, Sample x1, Sample y0, Sample y1) : a1((x0 == x1) ? 0 : (y1 - y0)/(x1 - x0)), a0(y0 - x0*a1) {} Sample operator ()(Sample x) const { return a0 + x*a1; } /// Returns the inverse map (with some numerical error) Linear inverse() const { Sample invA1 = 1/a1; return Linear(-a0*invA1, invA1); } }; /// A real-valued cubic curve. It has a "start" point where accuracy is highest. template class Cubic { Sample xStart, a0, a1, a2, a3; // Only use with y0 != y1 static inline Sample gradient(Sample x0, Sample x1, Sample y0, Sample y1) { return (y1 - y0)/(x1 - x0); } // Ensure a gradient produces monotonic segments static inline void ensureMonotonic(Sample &curveGrad, Sample gradA, Sample gradB) { if ((gradA <= 0 && gradB >= 0) || (gradA >= 0 && gradB <= 0)) { curveGrad = 0; // point is a local minimum/maximum } else { if (std::abs(curveGrad) > std::abs(gradA*3)) { curveGrad = gradA*3; } if (std::abs(curveGrad) > std::abs(gradB*3)) { curveGrad = gradB*3; } } } // When we have duplicate x-values (either side) make up a gradient static inline void chooseGradient(Sample &curveGrad, Sample grad1, Sample curveGradOther, Sample y0, Sample y1, bool monotonic) { curveGrad = 2*grad1 - curveGradOther; if (y0 != y1 && (y1 > y0) != (grad1 >= 0)) { // not duplicate y, but a local min/max curveGrad = 0; } else if (monotonic) { if (grad1 >= 0) { curveGrad = std::max(0, curveGrad); } else { curveGrad = std::min(0, curveGrad); } } } public: Cubic() : Cubic(0, 0, 0, 0, 0) {} Cubic(Sample xStart, Sample a0, Sample a1, Sample a2, Sample a3) : xStart(xStart), a0(a0), a1(a1), a2(a2), a3(a3) {} Sample operator ()(Sample x) const { x -= xStart; return a0 + x*(a1 + x*(a2 + x*a3)); } /// The reference x-value, used as the centre of the cubic expansion Sample start() const { return xStart; } /// Differentiate Cubic dx() const { return {xStart, a1, 2*a2, 3*a3, 0}; } /// Cubic segment based on start/end values and gradients static Cubic hermite(Sample x0, Sample x1, Sample y0, Sample y1, Sample g0, Sample g1) { Sample xScale = 1/(x1 - x0); return { x0, y0, g0, (3*(y1 - y0)*xScale - 2*g0 - g1)*xScale, (2*(y0 - y1)*xScale + g0 + g1)*(xScale*xScale) }; } /** Cubic segment (valid between `x1` and `x2`), which is smooth when applied to an adjacent set of points. If `x0 == x1` or `x2 == x3` it will choose a gradient which continues in a quadratic curve, or 0 if the point is a local minimum/maximum. */ static Cubic smooth(Sample x0, Sample x1, Sample x2, Sample x3, Sample y0, Sample y1, Sample y2, Sample y3, bool monotonic=false) { if (x1 == x2) return {0, y1, 0, 0, 0}; // zero-width segment, just return constant Sample grad1 = gradient(x1, x2, y1, y2); Sample curveGrad1 = grad1; if (x0 != x1) { // we have a defined x0-x1 gradient Sample grad0 = gradient(x0, x1, y0, y1); curveGrad1 = (grad0 + grad1)*Sample(0.5); if (monotonic) ensureMonotonic(curveGrad1, grad0, grad1); } else if (y0 != y1) { if ((y1 > y0) != (grad1 >= 0)) curveGrad1 = 0; // set to 0 if it's a min/max } Sample curveGrad2; if (x2 != x3) { // we have a defined x1-x2 gradient Sample grad2 = gradient(x2, x3, y2, y3); curveGrad2 = (grad1 + grad2)*Sample(0.5); if (monotonic) ensureMonotonic(curveGrad2, grad1, grad2); if (x0 == x1) { // If the other gradient isn't defined, make one up chooseGradient(curveGrad1, grad1, curveGrad2, y0, y1, monotonic); } } else { chooseGradient(curveGrad2, grad1, curveGrad1, y2, y3, monotonic); } return hermite(x1, x2, y1, y2, curveGrad1, curveGrad2); } }; /** Smooth interpolation (optionally monotonic) between points, using cubic segments. \diagram{cubic-segments-example.svg,Example curve including a repeated point and an instantaneous jump. The curve is flat beyond the first/last points.} To produce a sharp corner, use a repeated point. The gradient is flat at the edges, unless you use repeated points at the start/end.*/ template class CubicSegmentCurve { struct Point { Sample x, y; bool operator <(const Point &other) const { return x < other.x; } }; std::vector points; Point first{0, 0}, last{0, 0}; std::vector> _segments{1}; public: /// Clear existing points and segments void clear() { points.resize(0); _segments.resize(0); first = last = {0, 0}; } /// Add a new point, but does not recalculate the segments. `corner` just writes the point twice, for convenience. CubicSegmentCurve & add(Sample x, Sample y, bool corner=false) { points.push_back({x, y}); if (corner) points.push_back({x, y}); return *this; } /// Recalculates the segments. void update(bool monotonic=false) { if (points.empty()) add(0, 0); std::stable_sort(points.begin(), points.end()); // Ensure ascending order _segments.resize(0); first = points[0]; last = points.back(); for (size_t i = 1; i < points.size(); ++i) { Point p1 = points[i - 1]; Point p2 = points[i]; if (p1.x != p2.x) { Point p0 = (i > 1) ? points[i - 2] : Point{p1.x, p2.y}; Point p3 = (i + 1 < points.size()) ? points[i + 1] : Point{p2.x, p1.y}; _segments.push_back(Segment::smooth(p0.x, p1.x, p2.x, p3.x, p0.y, p1.y, p2.y, p3.y, monotonic)); } } } /// Reads a value out from the curve. Sample operator ()(Sample x) const { if (x <= first.x) return first.y; if (x >= last.x) return last.y; size_t index = 1; while (index < _segments.size() && _segments[index].start() <= x) { ++index; } return _segments[index - 1](x); } using Segment = Cubic; const std::vector & segments() const { return _segments; } }; /** A warped-range map, based on 1/x \diagram{curves-reciprocal-example.svg}*/ template class Reciprocal { Sample a, b, c, d; // (a + bx)/(c + dx) Reciprocal(Sample a, Sample b, Sample c, Sample d) : a(a), b(b), c(c), d(d) {} public: Reciprocal() : Reciprocal(0, 0.5, 1) {} /// If no x-range given, default to the unit range Reciprocal(Sample y0, Sample y1, Sample y2) : Reciprocal(0, 0.5, 1, y0, y1, y2) {} Reciprocal(Sample x0, Sample x1, Sample x2, Sample y0, Sample y1, Sample y2) { Sample kx = (x1 - x0)/(x2 - x1); Sample ky = (y1 - y0)/(y2 - y1); a = (kx*x2)*y0 - (ky*x0)*y2; b = ky*y2 - kx*y0; c = kx*x2 - ky*x0; d = ky - kx; } Sample operator ()(double x) const { return (a + b*x)/(c + d*x); } Reciprocal inverse() const { return Reciprocal(-a, c, b, -d); } Sample inverse(Sample y) const { return (c*y - a)/(b - d*y); } /// Combine two `Reciprocal`s together in sequence Reciprocal then(const Reciprocal &other) const { return Reciprocal(other.a*c + other.b*a, other.a*d + other.b*b, other.c*c + other.d*a, other.c*d + other.d*b); } }; /** @} */ }} // namespace #endif // include guard