Geraint ebaf93d494 Add .seek() method to setup/move input position
Also update DSP library to v1.6.0 (for `STFT::nextInvalid()`)
2024-02-16 12:11:58 +00:00

372 lines
11 KiB
C++

#include "./common.h"
#ifndef SIGNALSMITH_DSP_CURVES_H
#define SIGNALSMITH_DSP_CURVES_H
#include <vector>
#include <algorithm> // std::stable_sort
namespace signalsmith {
namespace curves {
/** @defgroup Curves Curves
@brief User-defined mapping functions
@{
@file
*/
/// Linear map for real values.
template<typename Sample=double>
class Linear {
Sample a1, a0;
public:
Linear() : Linear(0, 1) {}
Linear(Sample a0, Sample a1) : a1(a1), a0(a0) {}
/// Construct by from/to value pairs
Linear(Sample x0, Sample x1, Sample y0, Sample y1) : a1((x0 == x1) ? 0 : (y1 - y0)/(x1 - x0)), a0(y0 - x0*a1) {}
Sample operator ()(Sample x) const {
return a0 + x*a1;
}
Sample dx() const {
return a1;
}
/// Returns the inverse map (with some numerical error)
Linear inverse() const {
Sample invA1 = 1/a1;
return Linear(-a0*invA1, invA1);
}
};
/// A real-valued cubic curve. It has a "start" point where accuracy is highest.
template<typename Sample=double>
class Cubic {
Sample xStart, a0, a1, a2, a3;
// Only use with y0 != y1
static inline Sample gradient(Sample x0, Sample x1, Sample y0, Sample y1) {
return (y1 - y0)/(x1 - x0);
}
// Ensure a gradient produces monotonic segments
static inline void ensureMonotonic(Sample &curveGrad, Sample gradA, Sample gradB) {
if ((gradA <= 0 && gradB >= 0) || (gradA >= 0 && gradB <= 0)) {
curveGrad = 0; // point is a local minimum/maximum
} else {
if (std::abs(curveGrad) > std::abs(gradA*3)) {
curveGrad = gradA*3;
}
if (std::abs(curveGrad) > std::abs(gradB*3)) {
curveGrad = gradB*3;
}
}
}
// When we have duplicate x-values (either side) make up a gradient
static inline void chooseGradient(Sample &curveGrad, Sample grad1, Sample curveGradOther, Sample y0, Sample y1, bool monotonic) {
curveGrad = 2*grad1 - curveGradOther;
if (y0 != y1 && (y1 > y0) != (grad1 >= 0)) { // not duplicate y, but a local min/max
curveGrad = 0;
} else if (monotonic) {
if (grad1 >= 0) {
curveGrad = std::max<Sample>(0, curveGrad);
} else {
curveGrad = std::min<Sample>(0, curveGrad);
}
}
}
public:
Cubic() : Cubic(0, 0, 0, 0, 0) {}
Cubic(Sample xStart, Sample a0, Sample a1, Sample a2, Sample a3) : xStart(xStart), a0(a0), a1(a1), a2(a2), a3(a3) {}
Sample operator ()(Sample x) const {
x -= xStart;
return a0 + x*(a1 + x*(a2 + x*a3));
}
/// The reference x-value, used as the centre of the cubic expansion
Sample start() const {
return xStart;
}
/// Differentiate
Cubic dx() const {
return {xStart, a1, 2*a2, 3*a3, 0};
}
Sample dx(Sample x) const {
x -= xStart;
return a1 + x*(2*a2 + x*(3*a3));
}
/// Cubic segment based on start/end values and gradients
static Cubic hermite(Sample x0, Sample x1, Sample y0, Sample y1, Sample g0, Sample g1) {
Sample xScale = 1/(x1 - x0);
return {
x0, y0, g0,
(3*(y1 - y0)*xScale - 2*g0 - g1)*xScale,
(2*(y0 - y1)*xScale + g0 + g1)*(xScale*xScale)
};
}
/** Cubic segment (valid between `x1` and `x2`), which is smooth when applied to an adjacent set of points.
If `x0 == x1` or `x2 == x3` it will choose a gradient which continues in a quadratic curve, or 0 if the point is a local minimum/maximum.
*/
static Cubic smooth(Sample x0, Sample x1, Sample x2, Sample x3, Sample y0, Sample y1, Sample y2, Sample y3, bool monotonic=false) {
if (x1 == x2) return {0, y1, 0, 0, 0}; // zero-width segment, just return constant
Sample grad1 = gradient(x1, x2, y1, y2);
Sample curveGrad1 = grad1;
bool chooseGrad1 = false;
if (x0 != x1) { // we have a defined x0-x1 gradient
Sample grad0 = gradient(x0, x1, y0, y1);
curveGrad1 = (grad0 + grad1)*Sample(0.5);
if (monotonic) ensureMonotonic(curveGrad1, grad0, grad1);
} else if (y0 != y1 && (y1 > y0) != (grad1 >= 0)) {
curveGrad1 = 0; // set to 0 if it's a min/max
} else {
curveGrad1 = 0;
chooseGrad1 = true;
}
Sample curveGrad2;
if (x2 != x3) { // we have a defined x1-x2 gradient
Sample grad2 = gradient(x2, x3, y2, y3);
curveGrad2 = (grad1 + grad2)*Sample(0.5);
if (monotonic) ensureMonotonic(curveGrad2, grad1, grad2);
} else {
chooseGradient(curveGrad2, grad1, curveGrad1, y2, y3, monotonic);
}
if (chooseGrad1) {
chooseGradient(curveGrad1, grad1, curveGrad2, y0, y1, monotonic);
}
return hermite(x1, x2, y1, y2, curveGrad1, curveGrad2);
}
};
/** Smooth interpolation (optionally monotonic) between points, using cubic segments.
\diagram{cubic-segments-example.svg,Example curve including a repeated point and an instantaneous jump. The curve is flat beyond the first/last points.}
To produce a sharp corner, use a repeated point. The gradient is flat at the edges, unless you use repeated points at the start/end.*/
template<typename Sample=double>
class CubicSegmentCurve {
struct Point {
Sample x, y;
Sample lineGrad = 0, curveGrad = 0;
bool hasCurveGrad = false;
Point() : Point(0, 0) {}
Point(Sample x, Sample y) : x(x), y(y) {}
bool operator <(const Point &other) const {
return x < other.x;
}
};
std::vector<Point> points;
Point first{0, 0}, last{0, 0};
std::vector<Cubic<Sample>> _segments{1};
// Not public because it's only valid inside the bounds
const Cubic<Sample> & findSegment(Sample x) const {
// Binary search
size_t low = 0, high = _segments.size();
while (true) {
size_t mid = (low + high)/2;
if (low == mid) break;
if (_segments[mid].start() <= x) {
low = mid;
} else {
high = mid;
}
}
return _segments[low];
}
public:
Sample lowGrad = 0;
Sample highGrad = 0;
/// Clear existing points and segments
void clear() {
points.resize(0);
_segments.resize(0);
first = last = {0, 0};
}
/// Add a new point, but does not recalculate the segments. `corner` just writes the point twice, for convenience.
CubicSegmentCurve & add(Sample x, Sample y, bool corner=false) {
points.push_back({x, y});
if (corner) points.push_back({x, y});
return *this;
}
/// Recalculates the segments.
void update(bool monotonic=false, bool extendGrad=true, Sample monotonicFactor=3) {
if (points.empty()) add(0, 0);
std::stable_sort(points.begin(), points.end()); // Ensure ascending order
_segments.resize(0);
// Calculate the point-to-point gradients
for (size_t i = 1; i < points.size(); ++i) {
auto &prev = points[i - 1];
auto &next = points[i];
if (prev.x != next.x) {
prev.lineGrad = (next.y - prev.y)/(next.x - prev.x);
} else {
prev.lineGrad = 0;
}
}
for (auto &p : points) p.hasCurveGrad = false;
points[0].curveGrad = lowGrad;
points[0].hasCurveGrad = true;
points.back().curveGrad = highGrad;
points.back().hasCurveGrad = true;
// Calculate curve gradient where we know it
for (size_t i = 1; i + 1 < points.size(); ++i) {
auto &p0 = points[i - 1];
auto &p1 = points[i];
auto &p2 = points[i + 1];
if (p0.x != p1.x && p1.x != p2.x) {
p1.curveGrad = (p0.lineGrad + p1.lineGrad)*Sample(0.5);
p1.hasCurveGrad = true;
}
}
for (size_t i = 1; i < points.size(); ++i) {
Point &p1 = points[i - 1];
Point &p2 = points[i];
if (p1.x == p2.x) continue;
if (p1.hasCurveGrad) {
if (!p2.hasCurveGrad) {
p2.curveGrad = 2*p1.lineGrad - p1.curveGrad;
}
} else if (p2.hasCurveGrad) {
p1.curveGrad = 2*p1.lineGrad - p2.curveGrad;
} else {
p1.curveGrad = p2.curveGrad = p1.lineGrad;
}
}
if (monotonic) {
for (size_t i = 1; i < points.size(); ++i) {
Point &p1 = points[i - 1];
Point &p2 = points[i];
if (p1.x != p2.x) {
if (p1.lineGrad >= 0) {
p1.curveGrad = std::max<Sample>(0, std::min(p1.curveGrad, p1.lineGrad*monotonicFactor));
p2.curveGrad = std::max<Sample>(0, std::min(p2.curveGrad, p1.lineGrad*monotonicFactor));
} else {
p1.curveGrad = std::min<Sample>(0, std::max(p1.curveGrad, p1.lineGrad*monotonicFactor));
p2.curveGrad = std::min<Sample>(0, std::max(p2.curveGrad, p1.lineGrad*monotonicFactor));
}
}
}
}
for (size_t i = 1; i < points.size(); ++i) {
Point &p1 = points[i - 1];
Point &p2 = points[i];
if (p1.x != p2.x) {
_segments.push_back(Segment::hermite(p1.x, p2.x, p1.y, p2.y, p1.curveGrad, p2.curveGrad));
}
}
first = points[0];
last = points.back();
if (extendGrad && _segments.size()) {
if (points[0].x != points[1].x || points[0].y == points[1].y) {
lowGrad = _segments[0].dx(first.x);
}
auto &last = points.back(), &last2 = points[points.size() - 1];
if (last.x != last2.x || last.y == last2.y) {
highGrad = _segments.back().dx(last.x);
}
}
}
/// Reads a value out from the curve.
Sample operator()(Sample x) const {
if (x <= first.x) return first.y + (x - first.x)*lowGrad;
if (x >= last.x) return last.y + (x - last.x)*highGrad;
return findSegment(x)(x);
}
CubicSegmentCurve dx() const {
CubicSegmentCurve result{*this};
result.first.y = lowGrad;
result.last.y = highGrad;
result.lowGrad = result.highGrad = 0;
for (auto &s : result._segments) {
s = s.dx();
}
return result;
}
Sample dx(Sample x) const {
if (x < first.x) return lowGrad;
if (x >= last.x) return highGrad;
return findSegment(x).dx(x);
}
using Segment = Cubic<Sample>;
std::vector<Segment> & segments() {
return _segments;
}
const std::vector<Segment> & segments() const {
return _segments;
}
};
/** A warped-range map, based on 1/x
\diagram{curves-reciprocal-example.svg}*/
template<typename Sample=double>
class Reciprocal {
Sample a, b, c, d; // (a + bx)/(c + dx)
Reciprocal(Sample a, Sample b, Sample c, Sample d) : a(a), b(b), c(c), d(d) {}
public:
/** Decent approximation to the Bark scale
The Bark index goes from 1-24, but this map is valid from approximately 0.25 - 27.5.
You can get the bandwidth by `barkScale.dx(barkIndex)`.
\diagram{curves-reciprocal-approx-bark.svg}*/
static Reciprocal<Sample> barkScale() {
return {1, 10, 24, 60, 1170, 13500};
}
/// Returns a map from 0-1 to the given (non-negative) Hz range.
static Reciprocal<Sample> barkRange(Sample lowHz, Sample highHz) {
Reciprocal bark = barkScale();
Sample lowBark = bark.inverse(lowHz), highBark = bark.inverse(highHz);
return Reciprocal(lowBark, (lowBark + highBark)/2, highBark).then(bark);
}
Reciprocal() : Reciprocal(0, 0.5, 1) {}
/// If no x-range given, default to the unit range
Reciprocal(Sample y0, Sample y1, Sample y2) : Reciprocal(0, 0.5, 1, y0, y1, y2) {}
Reciprocal(Sample x0, Sample x1, Sample x2, Sample y0, Sample y1, Sample y2) {
Sample kx = (x1 - x0)/(x2 - x1);
Sample ky = (y1 - y0)/(y2 - y1);
a = (kx*x2)*y0 - (ky*x0)*y2;
b = ky*y2 - kx*y0;
c = kx*x2 - ky*x0;
d = ky - kx;
}
Sample operator ()(double x) const {
return (a + b*x)/(c + d*x);
}
Reciprocal inverse() const {
return Reciprocal(-a, c, b, -d);
}
Sample inverse(Sample y) const {
return (c*y - a)/(b - d*y);
}
Sample dx(Sample x) const {
Sample l = (c + d*x);
return (b*c - a*d)/(l*l);
}
/// Combine two `Reciprocal`s together in sequence
Reciprocal then(const Reciprocal &other) const {
return Reciprocal(other.a*c + other.b*a, other.a*d + other.b*b, other.c*c + other.d*a, other.c*d + other.d*b);
}
};
/** @} */
}} // namespace
#endif // include guard