Two-pass setup
This commit is contained in:
parent
96eeee7a6f
commit
8787460488
@ -37,12 +37,10 @@ struct SignalsmithStretch {
|
||||
configure(nChannels, sampleRate*0.12, sampleRate*0.03);
|
||||
freqWeight = 1;
|
||||
timeWeight = 2;
|
||||
channelWeight = 0.5;
|
||||
}
|
||||
|
||||
// manual parameters
|
||||
Sample freqWeight = 1, timeWeight = 2, channelWeight = 0.5, maxWeight = 2;
|
||||
bool sortOrder = true; // Assemble output spectrum highest-magnitude first
|
||||
Sample freqWeight = 1, timeWeight = 2, maxWeight = 2;
|
||||
|
||||
/// Manual setup
|
||||
void configure(int nChannels, int blockSamples, int intervalSamples) {
|
||||
@ -172,6 +170,7 @@ private:
|
||||
struct Band {
|
||||
Complex input, prevInput{0};
|
||||
Complex output, prevOutput{0};
|
||||
Sample inputEnergy;
|
||||
};
|
||||
std::vector<Band> channelBands;
|
||||
Band * bandsForChannel(int channel) {
|
||||
@ -235,7 +234,6 @@ private:
|
||||
Complex input;
|
||||
Complex freqPrediction;
|
||||
Complex shortVerticalTwist, longVerticalTwist;
|
||||
Complex channelTwist;
|
||||
};
|
||||
std::vector<Prediction> channelPredictions;
|
||||
Prediction * predictionsForChannel(int c) {
|
||||
@ -278,7 +276,7 @@ private:
|
||||
|
||||
Prediction prediction;
|
||||
|
||||
prediction.energy = getFractional<&Band::energy>(c, lowIndex, fracIndex);
|
||||
prediction.energy = getFractional<&Band::inputEnergy>(c, lowIndex, fracIndex);
|
||||
prediction.energy *= std::max<Sample>(0, mapPoint.freqGrad); // scale the energy according to local stretch factor
|
||||
prediction.input = getFractional<&Band::input>(c, lowIndex, fracIndex);
|
||||
|
||||
@ -286,11 +284,6 @@ private:
|
||||
Complex freqTwist = prediction.input*std::conj(prevInput);
|
||||
prediction.freqPrediction = outputBin.prevOutput*freqTwist;
|
||||
|
||||
if (c > 0) {
|
||||
prediction.channelTwist = prediction.input*std::conj(predictions0[b]);
|
||||
} else {
|
||||
prediction.channelTwist = 0;
|
||||
}
|
||||
if (b > 0) {
|
||||
Complex downInput = getFractional<&Band::input>(c, mapPoint.inputBin - rate);
|
||||
prediction.shortVerticalTwist = prediction.input*std::conj(downInput);
|
||||
@ -307,12 +300,12 @@ private:
|
||||
predictions[b] = prediction;
|
||||
|
||||
// Rough output prediction based on phase-vocoder, sensitive to previous input/output magnitude
|
||||
outputBin.output = prediction.freqPrediction/(prediction.energy + 1e-10);
|
||||
outputBin.output = prediction.freqPrediction/(prediction.energy + Sample(1e-10));
|
||||
}
|
||||
}
|
||||
for (int b = 0; b < stft.bands(); ++b) {
|
||||
// Find maximum-energy channel and calculate that
|
||||
int maxChannel = 0;
|
||||
maxEnergyChannel[b] = 0;
|
||||
Sample maxEnergy = predictions0[b].energy;
|
||||
for (int c = 1; c < channels; ++c) {
|
||||
Sample e = predictionsForChannel(c)[b].energy;
|
||||
@ -321,116 +314,85 @@ private:
|
||||
maxEnergy = e;
|
||||
}
|
||||
}
|
||||
maxEnergyChannel[b] = maxChannel;
|
||||
Sample channelInput = predictionsForChannel(maxChannel)
|
||||
for (int c = 0; c < channels; ++c) {
|
||||
Prediction &prediction = predictionsForChannel(c)[b];
|
||||
if (c == maxChannel) {
|
||||
prediction.channelTwist = 0;
|
||||
} else {
|
||||
prediction.channelTwist = prediction.input*std::conj(channelInput);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (auto &c : maxEnergyChannel) c = -1;
|
||||
for (auto &ordered : observationOrder) {
|
||||
auto *bins = bandsForChannel(ordered.channel);
|
||||
auto &outputBin = bins[ordered.outputBand];
|
||||
|
||||
int lowIndex = std::floor(ordered.inputIndex);
|
||||
Sample fracIndex = ordered.inputIndex - std::floor(ordered.inputIndex);
|
||||
|
||||
// We always have the phase-vocoder prediction
|
||||
Complex timeChange = ordered.input*std::conj(prevInput);
|
||||
Complex freqPrediction = outputBin.prevOutput*timeChange;
|
||||
Complex prediction = freqPrediction*freqWeight;
|
||||
|
||||
auto *predictions = predictionsForChannel(maxChannel);
|
||||
auto &prediction = predictions[b];
|
||||
auto *bins = bandsForChannel(maxChannel);
|
||||
auto &outputBin = bins[b];
|
||||
auto mapPoint = outputMap[b];
|
||||
|
||||
Complex phase = prediction.freqPrediction*freqWeight;
|
||||
|
||||
// Track the strongest prediction
|
||||
Complex maxPrediction = freqPrediction;
|
||||
Complex maxPrediction = prediction.freqPrediction;
|
||||
Sample maxPredictionNorm = std::norm(maxPrediction);
|
||||
|
||||
// vertical upwards, if it exists
|
||||
if (ordered.outputBand > 0) {
|
||||
auto &outputDownBin = bins[ordered.outputBand - 1];
|
||||
if (outputDownBin.ready) {
|
||||
Complex downInput = getFractional<&Band::input>(ordered.channel, ordered.inputIndex - rate);
|
||||
Complex freqChange = ordered.input*std::conj(downInput);
|
||||
Complex newPrediction = outputDownBin.output*freqChange;
|
||||
prediction += newPrediction*timeWeight;
|
||||
if (std::norm(newPrediction) > maxPredictionNorm) {
|
||||
maxPredictionNorm = std::norm(newPrediction);
|
||||
maxPrediction = newPrediction;
|
||||
}
|
||||
}
|
||||
}
|
||||
// vertical downwards, if it exists
|
||||
if (ordered.outputBand < stft.bands() - 1) {
|
||||
auto &outputDownBin = bins[ordered.outputBand + 1];
|
||||
if (outputDownBin.ready) {
|
||||
Complex downInput = getFractional<&Band::input>(ordered.channel, ordered.inputIndex + rate);
|
||||
Complex freqChange = ordered.input*std::conj(downInput);
|
||||
Complex newPrediction = outputDownBin.output*freqChange;
|
||||
prediction += newPrediction*timeWeight;
|
||||
if (std::norm(newPrediction) > maxPredictionNorm) {
|
||||
maxPredictionNorm = std::norm(newPrediction);
|
||||
maxPrediction = newPrediction;
|
||||
}
|
||||
}
|
||||
}
|
||||
// longer verticals
|
||||
if (ordered.outputBand > longStep) {
|
||||
auto &outputDownBin = bins[ordered.outputBand - longStep];
|
||||
if (outputDownBin.ready) {
|
||||
Complex downInput = getFractional<&Band::input>(ordered.channel, ordered.inputIndex - longStep*rate);
|
||||
Complex freqChange = ordered.input*std::conj(downInput);
|
||||
Complex newPrediction = outputDownBin.output*freqChange;
|
||||
prediction += newPrediction*timeWeight;
|
||||
if (std::norm(newPrediction) > maxPredictionNorm) {
|
||||
maxPredictionNorm = std::norm(newPrediction);
|
||||
maxPrediction = newPrediction;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (ordered.outputBand < stft.bands() - longStep) {
|
||||
auto &outputDownBin = bins[ordered.outputBand + longStep];
|
||||
if (outputDownBin.ready) {
|
||||
Complex downInput = getFractional<&Band::input>(ordered.channel, ordered.inputIndex + longStep*rate);
|
||||
Complex freqChange = ordered.input*std::conj(downInput);
|
||||
Complex newPrediction = outputDownBin.output*freqChange;
|
||||
prediction += newPrediction*timeWeight;
|
||||
if (std::norm(newPrediction) > maxPredictionNorm) {
|
||||
maxPredictionNorm = std::norm(newPrediction);
|
||||
maxPrediction = newPrediction;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Inter-channel prediction, if it exists
|
||||
int &maxChannel = maxEnergyChannel[ordered.outputBand];
|
||||
if (maxChannel >= 0) {
|
||||
Complex otherInput = getFractional<&Band::input>(maxChannel, lowIndex, fracIndex);
|
||||
Complex channelRot = ordered.input*std::conj(otherInput);
|
||||
|
||||
auto *otherBins = bandsForChannel(maxChannel);
|
||||
Complex otherOutputOutput = otherBins[ordered.outputBand].output;
|
||||
Complex newPrediction = otherOutputOutput*channelRot;
|
||||
prediction += newPrediction*channelWeight;
|
||||
// Short steps
|
||||
if (b > 0) {
|
||||
auto &otherBin = bins[b - 1];
|
||||
Complex newPrediction = otherBin.output*prediction.shortVerticalTwist;
|
||||
phase += newPrediction*timeWeight;
|
||||
if (std::norm(newPrediction) > maxPredictionNorm) {
|
||||
maxPredictionNorm = std::norm(newPrediction);
|
||||
maxPrediction = newPrediction;
|
||||
}
|
||||
}
|
||||
if (b < stft.bands() - 1) {
|
||||
auto &otherBin = bins[b + 1];
|
||||
auto &otherPrediction = predictions[b + 1];
|
||||
Complex newPrediction = otherBin.output*std::conj(otherPrediction.shortVerticalTwist);
|
||||
phase += newPrediction*timeWeight;
|
||||
if (std::norm(newPrediction) > maxPredictionNorm) {
|
||||
maxPredictionNorm = std::norm(newPrediction);
|
||||
maxPrediction = newPrediction;
|
||||
}
|
||||
}
|
||||
// longer verticals
|
||||
if (b > longVerticalStep) {
|
||||
auto &otherBin = bins[b - longVerticalStep];
|
||||
Complex newPrediction = otherBin.output*prediction.longVerticalTwist;
|
||||
phase += newPrediction*timeWeight;
|
||||
if (std::norm(newPrediction) > maxPredictionNorm) {
|
||||
maxPredictionNorm = std::norm(newPrediction);
|
||||
maxPrediction = newPrediction;
|
||||
}
|
||||
}
|
||||
if (b < stft.bands() - longVerticalStep) {
|
||||
auto &otherBin = bins[b + longVerticalStep];
|
||||
auto &otherPrediction = predictions[b + longVerticalStep];
|
||||
Complex newPrediction = otherBin.output*std::conj(otherPrediction.longVerticalTwist);
|
||||
phase += newPrediction*timeWeight;
|
||||
if (std::norm(newPrediction) > maxPredictionNorm) {
|
||||
maxPredictionNorm = std::norm(newPrediction);
|
||||
maxPrediction = newPrediction;
|
||||
}
|
||||
}
|
||||
|
||||
phase += maxPrediction*maxWeight;
|
||||
|
||||
Sample phaseNorm = std::norm(phase);
|
||||
if (phaseNorm > 1e-15) {
|
||||
outputBin.output = phase*std::sqrt(prediction.energy/phaseNorm);
|
||||
} else {
|
||||
maxChannel = ordered.channel;
|
||||
outputBin.output = prediction.input;
|
||||
}
|
||||
|
||||
prediction += maxPrediction*maxWeight;
|
||||
|
||||
Sample predictionNorm = std::norm(prediction);
|
||||
if (predictionNorm > 1e-15) {
|
||||
outputBin.output = prediction*std::sqrt(ordered.energy/predictionNorm);
|
||||
} else {
|
||||
outputBin.output = ordered.input;
|
||||
// All other bins are locked in phase
|
||||
for (int c = 0; c < channels; ++c) {
|
||||
if (c != maxChannel) {
|
||||
auto &channelBin = bandsForChannel(c)[b];
|
||||
auto &channelPrediction = predictionsForChannel(c)[b];
|
||||
|
||||
Complex channelTwist = prediction.input*std::conj(channelPrediction.input);
|
||||
Complex channelPhase = outputBin.output*channelTwist;
|
||||
|
||||
Sample channelPhaseNorm = std::norm(channelPhase);
|
||||
if (channelPhaseNorm > 1e-15) {
|
||||
channelBin.output = channelPhase*std::sqrt(prediction.energy/channelPhaseNorm);
|
||||
} else {
|
||||
channelBin.output = channelPrediction.input;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -448,6 +410,7 @@ private:
|
||||
Band *bins = bandsForChannel(c);
|
||||
for (int b = 0; b < stft.bands(); ++b) {
|
||||
Sample e = std::norm(bins[b].input);
|
||||
bins[b].inputEnergy = e; // Used for interpolating prediction energy
|
||||
energy[b] += e;
|
||||
}
|
||||
}
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user