Start replacing order-sorting with two-pass setup
This commit is contained in:
parent
598d037212
commit
96eeee7a6f
@ -41,9 +41,8 @@ struct SignalsmithStretch {
|
||||
}
|
||||
|
||||
// manual parameters
|
||||
Sample freqWeight = 1, timeWeight = 2, channelWeight = 0.5;
|
||||
Sample freqWeight = 1, timeWeight = 2, channelWeight = 0.5, maxWeight = 2;
|
||||
bool sortOrder = true; // Assemble output spectrum highest-magnitude first
|
||||
Sample maxProportion = 0.75; // How much the strongest prediction overrides everything else
|
||||
|
||||
/// Manual setup
|
||||
void configure(int nChannels, int blockSamples, int intervalSamples) {
|
||||
@ -63,7 +62,7 @@ struct SignalsmithStretch {
|
||||
energy.resize(stft.bands());
|
||||
smoothedEnergy.resize(stft.bands());
|
||||
outputMap.resize(stft.bands());
|
||||
observationOrder.resize(channels*stft.bands());
|
||||
channelPredictions.resize(channels*stft.bands());
|
||||
maxEnergyChannel.resize(stft.bands());
|
||||
}
|
||||
|
||||
@ -173,9 +172,6 @@ private:
|
||||
struct Band {
|
||||
Complex input, prevInput{0};
|
||||
Complex output, prevOutput{0};
|
||||
Complex timeChange{0};
|
||||
Sample energy, prevEnergy;
|
||||
bool ready = false;
|
||||
};
|
||||
std::vector<Band> channelBands;
|
||||
Band * bandsForChannel(int channel) {
|
||||
@ -234,18 +230,17 @@ private:
|
||||
};
|
||||
std::vector<PitchMapPoint> outputMap;
|
||||
|
||||
struct OrderPoint {
|
||||
int channel, outputBand;
|
||||
Sample inputIndex;
|
||||
struct Prediction {
|
||||
Sample energy;
|
||||
Complex input;
|
||||
|
||||
// For sorting in descending order
|
||||
bool operator<(const OrderPoint &other) const {
|
||||
return other.energy < energy;
|
||||
}
|
||||
Complex freqPrediction;
|
||||
Complex shortVerticalTwist, longVerticalTwist;
|
||||
Complex channelTwist;
|
||||
};
|
||||
std::vector<OrderPoint> observationOrder;
|
||||
std::vector<Prediction> channelPredictions;
|
||||
Prediction * predictionsForChannel(int c) {
|
||||
return channelPredictions.data() + c*stft.bands();
|
||||
}
|
||||
std::vector<int> maxEnergyChannel;
|
||||
|
||||
void processSpectrum(int inputInterval) {
|
||||
@ -269,24 +264,74 @@ private:
|
||||
findPeaks(smoothingBins);
|
||||
updateOutputMap(smoothingBins);
|
||||
|
||||
int longVerticalStep = std::round(smoothingBins);
|
||||
auto *predictions0 = predictionsForChannel(0);
|
||||
for (auto &c : maxEnergyChannel) c = -1;
|
||||
for (int c = 0; c < channels; ++c) {
|
||||
Band *bins = bandsForChannel(c);
|
||||
auto *order = observationOrder.data() + c*stft.bands();
|
||||
auto *predictions = predictionsForChannel(c);
|
||||
for (int b = 0; b < stft.bands(); ++b) {
|
||||
auto &outputBin = bins[b];
|
||||
auto mapPoint = outputMap[b];
|
||||
int lowIndex = std::floor(mapPoint.inputBin);
|
||||
Sample fracIndex = mapPoint.inputBin - std::floor(mapPoint.inputBin);
|
||||
|
||||
Sample outputEnergy = getFractional<&Band::energy>(c, lowIndex, fracIndex);
|
||||
Complex input = getFractional<&Band::input>(c, lowIndex, fracIndex);
|
||||
Prediction prediction;
|
||||
|
||||
outputEnergy *= std::max<Sample>(0, mapPoint.freqGrad); // scale the energy according to local stretch factor
|
||||
order[b] = {c, b, mapPoint.inputBin, outputEnergy, input};
|
||||
prediction.energy = getFractional<&Band::energy>(c, lowIndex, fracIndex);
|
||||
prediction.energy *= std::max<Sample>(0, mapPoint.freqGrad); // scale the energy according to local stretch factor
|
||||
prediction.input = getFractional<&Band::input>(c, lowIndex, fracIndex);
|
||||
|
||||
bins[b].ready = false;
|
||||
Complex prevInput = getFractional<&Band::prevInput>(c, lowIndex, fracIndex);
|
||||
Complex freqTwist = prediction.input*std::conj(prevInput);
|
||||
prediction.freqPrediction = outputBin.prevOutput*freqTwist;
|
||||
|
||||
if (c > 0) {
|
||||
prediction.channelTwist = prediction.input*std::conj(predictions0[b]);
|
||||
} else {
|
||||
prediction.channelTwist = 0;
|
||||
}
|
||||
if (b > 0) {
|
||||
Complex downInput = getFractional<&Band::input>(c, mapPoint.inputBin - rate);
|
||||
prediction.shortVerticalTwist = prediction.input*std::conj(downInput);
|
||||
if (b > longVerticalStep) {
|
||||
Complex longDownInput = getFractional<&Band::input>(c, mapPoint.inputBin - longVerticalStep*rate);
|
||||
prediction.longVerticalTwist = prediction.input*std::conj(longDownInput);
|
||||
} else {
|
||||
prediction.longVerticalTwist = 0;
|
||||
}
|
||||
} else {
|
||||
prediction.shortVerticalTwist = prediction.longVerticalTwist = 0;
|
||||
}
|
||||
|
||||
predictions[b] = prediction;
|
||||
|
||||
// Rough output prediction based on phase-vocoder, sensitive to previous input/output magnitude
|
||||
outputBin.output = prediction.freqPrediction/(prediction.energy + 1e-10);
|
||||
}
|
||||
}
|
||||
for (int b = 0; b < stft.bands(); ++b) {
|
||||
int maxChannel = 0;
|
||||
maxEnergyChannel[b] = 0;
|
||||
Sample maxEnergy = predictions0[b].energy;
|
||||
for (int c = 1; c < channels; ++c) {
|
||||
Sample e = predictionsForChannel(c)[b].energy;
|
||||
if (e > maxEnergy) {
|
||||
maxChannel = c;
|
||||
maxEnergy = e;
|
||||
}
|
||||
}
|
||||
maxEnergyChannel[b] = maxChannel;
|
||||
Sample channelInput = predictionsForChannel(maxChannel)
|
||||
for (int c = 0; c < channels; ++c) {
|
||||
Prediction &prediction = predictionsForChannel(c)[b];
|
||||
if (c == maxChannel) {
|
||||
prediction.channelTwist = 0;
|
||||
} else {
|
||||
prediction.channelTwist = prediction.input*std::conj(channelInput);
|
||||
}
|
||||
}
|
||||
}
|
||||
if (sortOrder) std::sort(observationOrder.begin(), observationOrder.end());
|
||||
|
||||
for (auto &c : maxEnergyChannel) c = -1;
|
||||
for (auto &ordered : observationOrder) {
|
||||
@ -297,12 +342,12 @@ private:
|
||||
Sample fracIndex = ordered.inputIndex - std::floor(ordered.inputIndex);
|
||||
|
||||
// We always have the phase-vocoder prediction
|
||||
Complex prevInput = getFractional<&Band::prevInput>(ordered.channel, lowIndex, fracIndex);
|
||||
Complex timeChange = ordered.input*std::conj(prevInput);
|
||||
Complex prediction = outputBin.prevOutput*timeChange*freqWeight;
|
||||
Complex freqPrediction = outputBin.prevOutput*timeChange;
|
||||
Complex prediction = freqPrediction*freqWeight;
|
||||
|
||||
// Track the strongest prediction
|
||||
Complex maxPrediction = prediction;
|
||||
Complex maxPrediction = freqPrediction;
|
||||
Sample maxPredictionNorm = std::norm(maxPrediction);
|
||||
|
||||
// vertical upwards, if it exists
|
||||
@ -311,8 +356,8 @@ private:
|
||||
if (outputDownBin.ready) {
|
||||
Complex downInput = getFractional<&Band::input>(ordered.channel, ordered.inputIndex - rate);
|
||||
Complex freqChange = ordered.input*std::conj(downInput);
|
||||
Complex newPrediction = outputDownBin.output*freqChange*timeWeight;
|
||||
prediction += newPrediction;
|
||||
Complex newPrediction = outputDownBin.output*freqChange;
|
||||
prediction += newPrediction*timeWeight;
|
||||
if (std::norm(newPrediction) > maxPredictionNorm) {
|
||||
maxPredictionNorm = std::norm(newPrediction);
|
||||
maxPrediction = newPrediction;
|
||||
@ -325,8 +370,8 @@ private:
|
||||
if (outputDownBin.ready) {
|
||||
Complex downInput = getFractional<&Band::input>(ordered.channel, ordered.inputIndex + rate);
|
||||
Complex freqChange = ordered.input*std::conj(downInput);
|
||||
Complex newPrediction = outputDownBin.output*freqChange*timeWeight;
|
||||
prediction += newPrediction;
|
||||
Complex newPrediction = outputDownBin.output*freqChange;
|
||||
prediction += newPrediction*timeWeight;
|
||||
if (std::norm(newPrediction) > maxPredictionNorm) {
|
||||
maxPredictionNorm = std::norm(newPrediction);
|
||||
maxPrediction = newPrediction;
|
||||
@ -334,14 +379,13 @@ private:
|
||||
}
|
||||
}
|
||||
// longer verticals
|
||||
int longStep = std::round(smoothingBins);
|
||||
if (ordered.outputBand > longStep) {
|
||||
auto &outputDownBin = bins[ordered.outputBand - longStep];
|
||||
if (outputDownBin.ready) {
|
||||
Complex downInput = getFractional<&Band::input>(ordered.channel, ordered.inputIndex - longStep*rate);
|
||||
Complex freqChange = ordered.input*std::conj(downInput);
|
||||
Complex newPrediction = outputDownBin.output*freqChange*timeWeight;
|
||||
prediction += newPrediction;
|
||||
Complex newPrediction = outputDownBin.output*freqChange;
|
||||
prediction += newPrediction*timeWeight;
|
||||
if (std::norm(newPrediction) > maxPredictionNorm) {
|
||||
maxPredictionNorm = std::norm(newPrediction);
|
||||
maxPrediction = newPrediction;
|
||||
@ -353,8 +397,8 @@ private:
|
||||
if (outputDownBin.ready) {
|
||||
Complex downInput = getFractional<&Band::input>(ordered.channel, ordered.inputIndex + longStep*rate);
|
||||
Complex freqChange = ordered.input*std::conj(downInput);
|
||||
Complex newPrediction = outputDownBin.output*freqChange*timeWeight;
|
||||
prediction += newPrediction;
|
||||
Complex newPrediction = outputDownBin.output*freqChange;
|
||||
prediction += newPrediction*timeWeight;
|
||||
if (std::norm(newPrediction) > maxPredictionNorm) {
|
||||
maxPredictionNorm = std::norm(newPrediction);
|
||||
maxPrediction = newPrediction;
|
||||
@ -370,8 +414,8 @@ private:
|
||||
|
||||
auto *otherBins = bandsForChannel(maxChannel);
|
||||
Complex otherOutputOutput = otherBins[ordered.outputBand].output;
|
||||
Complex newPrediction = otherOutputOutput*channelRot*channelWeight;
|
||||
prediction += newPrediction;
|
||||
Complex newPrediction = otherOutputOutput*channelRot;
|
||||
prediction += newPrediction*channelWeight;
|
||||
if (std::norm(newPrediction) > maxPredictionNorm) {
|
||||
maxPredictionNorm = std::norm(newPrediction);
|
||||
maxPrediction = newPrediction;
|
||||
@ -380,7 +424,7 @@ private:
|
||||
maxChannel = ordered.channel;
|
||||
}
|
||||
|
||||
prediction += (maxPrediction - prediction)*maxProportion;
|
||||
prediction += maxPrediction*maxWeight;
|
||||
|
||||
Sample predictionNorm = std::norm(prediction);
|
||||
if (predictionNorm > 1e-15) {
|
||||
@ -388,14 +432,11 @@ private:
|
||||
} else {
|
||||
outputBin.output = ordered.input;
|
||||
}
|
||||
|
||||
outputBin.ready = true;
|
||||
}
|
||||
|
||||
for (auto &bin : channelBands) {
|
||||
bin.prevOutput = bin.output;
|
||||
bin.prevInput = bin.input;
|
||||
bin.prevEnergy = bin.energy;
|
||||
}
|
||||
}
|
||||
|
||||
@ -407,7 +448,6 @@ private:
|
||||
Band *bins = bandsForChannel(c);
|
||||
for (int b = 0; b < stft.bands(); ++b) {
|
||||
Sample e = std::norm(bins[b].input);
|
||||
bins[b].energy = e;
|
||||
energy[b] += e;
|
||||
}
|
||||
}
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user